Electronic waste is more than improperly discarded batteries. The term encompasses nearly all appliances and digital devices that have the potential to become part of a landfill, and includes kitchen accessories as well as outdated computers. Once a limited issue, the problem is no longer restricted to wealthier consumer countries. Recycling and disposing of Austin e-waste efficiently and economically is a shared goal of most large Texas cities.
Dealing with this issue has become more urgent because of the numbers of people worldwide who can now afford to purchase and use them. Broken electronics are rarely repaired because newer, improved versions are constantly being offered to consumers, making maintenance irrelevant. Although the extreme toxins they contain consistently make headlines, they are not the only reason for proper disposal.
Inside each old appliance are a long list of precious metals. Although the old massive computer displays are gone, any new device that hosts a printed circuit automatically contains a measurable amount of gold, platinum, silver, and palladium. Elements with exotic names such as indium and gallium are important in new flat-screen display technologies, and all have comparatively high value in the recycling industry.
It is impractical to do that extraction on a personal basis, but in large quantities this modern form of mining produces more pure metal than the original ores. Comparatively rare and costly metallic elements are a small fraction of the materials used to manufacture a new smartphone, which also contain significant amounts of copper and other more common metals. The accompanying plastics can also be partially recycled.
The key to successful recycling is profitability. It can be performed on smaller scales by individuals, but the most efficient operations employ numbers of people. Most centers begin by separating individual components manually, removing both processors and microchips from the original housing. The remaining fragments are then run through a specialized chipper that shreds them and makes more intense separation possible.
After having been re-mined, most of the remainder then sold back to manufacturing firms for the creation of new products. Manufacturers benefit because they do not have to extract as much basic raw material from the earth, and consumers also enjoy somewhat lower prices as a result. Disposing of personal electronic waste responsibly is only part of the overall scenario, which has a predictably darker side.
Each year the collective mound of electronic garbage increases dramatically along with renewed efforts to promote proper disposal, but good intentions cannot keep pace with current rates of production. The associated health hazards have been proven, including mercury and lead poisoning. Children exposed to those materials often have multiple developmental problems, and adults suffer brain and respiratory issues.
The total amount of used electronic parts worldwide is very difficult to calculate or track using current methods. The problem was created in part by economic realities, and can be solved by using the same motivations. While it is important to remind populations about the physical health hazards of non-recycling, the best long-term solution is the continued development of industries that thrive on processing e-waste.
Dealing with this issue has become more urgent because of the numbers of people worldwide who can now afford to purchase and use them. Broken electronics are rarely repaired because newer, improved versions are constantly being offered to consumers, making maintenance irrelevant. Although the extreme toxins they contain consistently make headlines, they are not the only reason for proper disposal.
Inside each old appliance are a long list of precious metals. Although the old massive computer displays are gone, any new device that hosts a printed circuit automatically contains a measurable amount of gold, platinum, silver, and palladium. Elements with exotic names such as indium and gallium are important in new flat-screen display technologies, and all have comparatively high value in the recycling industry.
It is impractical to do that extraction on a personal basis, but in large quantities this modern form of mining produces more pure metal than the original ores. Comparatively rare and costly metallic elements are a small fraction of the materials used to manufacture a new smartphone, which also contain significant amounts of copper and other more common metals. The accompanying plastics can also be partially recycled.
The key to successful recycling is profitability. It can be performed on smaller scales by individuals, but the most efficient operations employ numbers of people. Most centers begin by separating individual components manually, removing both processors and microchips from the original housing. The remaining fragments are then run through a specialized chipper that shreds them and makes more intense separation possible.
After having been re-mined, most of the remainder then sold back to manufacturing firms for the creation of new products. Manufacturers benefit because they do not have to extract as much basic raw material from the earth, and consumers also enjoy somewhat lower prices as a result. Disposing of personal electronic waste responsibly is only part of the overall scenario, which has a predictably darker side.
Each year the collective mound of electronic garbage increases dramatically along with renewed efforts to promote proper disposal, but good intentions cannot keep pace with current rates of production. The associated health hazards have been proven, including mercury and lead poisoning. Children exposed to those materials often have multiple developmental problems, and adults suffer brain and respiratory issues.
The total amount of used electronic parts worldwide is very difficult to calculate or track using current methods. The problem was created in part by economic realities, and can be solved by using the same motivations. While it is important to remind populations about the physical health hazards of non-recycling, the best long-term solution is the continued development of industries that thrive on processing e-waste.
Keine Kommentare:
Kommentar veröffentlichen